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Problem One: Finding Flaws in Proofs

Two of the first three problem sets have had erroneous proofs on them.  Now that you're equipped 
with first-order logic,  look over the following incorrect  proofs.  For each proof,  translate  the 
statement of the theorem into first-order logic, then translate what theorem was actually proven 
into  first-order  logic.   Explain  why the  statement  of  the theorem and the  statement  that  was 
proven are not the same thing.

Theorem: For any sets A and B, A  ∪ B  ⊆ A ∩ B

Proof: We need to show that for any arbitrary x  A  B∈ ∪ , x  A ∩ B∈ .  If x  A ∩ B∈ , then x ∈ A 
and x ∈ B, so x  A  B∈ ∪ . ■

Theorem: If a binary relation R over the set A is not reflexive, then it is irreflexive.

Proof: Since R is not reflexive, there must be at least one x  A∈  such that xRx does not hold. 
Since the choice of x was arbitrary, we must therefore have that for any x  A∈ , xRx does 
not hold.  Thus R is irreflexive. ■

Theorem: Every positive integer can be written as 2x + 3y for some positive integers x and y.

Proof: By contradiction; assume that no positive integer can be written as 2x + 3y for some 
positive integers x and y.  But this is clearly false; for example, 50 = 2·10 + 3·10.  We have 
reached a contradiction, so our assumption must have been wrong, so any positive integer 
can be written as 2x + 3y for some positive integers x and y. ■
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Problem Two: Translating into Propositional Logic

For each of the following statements, translate that statement into propositional logic using the 
indicated propositional variables.

i. Let r be “you can run” and h be “you can hide.”  Write a statement in propositional logic 
that says “You can run, but you can't hide.”

ii. Let r be “it rains” and p be “it pours.”  Write a statement in propositional logic that says 
“when it rains, it pours.” 

iii. Let p be “contains peanuts” and m be “contains milk.”  Write a statement in propositional 
logic that says “contains peanuts and/or milk.”

iv. Let w be “I will go for a walk” and v be “the velociraptors are loose.”  Write a statement 
in propositional logic that says “I will go for a walk unless the velociraptors are loose.”

Problem Three: Propositional Negations

For each of the propositional logic statements in problem two, find a statement in propositional 
logic that is the negation of that statement.  Your statement must not have any negations that 
aren't directly applied to propositions.  Then prove your statement is a valid negation by using a 
truth table.

Problem Four: First-Order Theories

In lecture, we've seen how to use quantifiers to encode statements like “for any natural number 
…” or  “there  is  some color  such  that  …”  However,  how might  we  use  quantifiers  to  say 
something like the following?

Graph G is a DAG

One way to encode this might be to have a predicate DAG(x) that says if a graph is a DAG, but 
this is somewhat unsatisfying.  A better idea would be to spell out, in first-order logic, a statement 
like

G is directed and G contains no cycles.

To encode that G is directed, we could introduce a simple predicate like Digraph(G), which states 
whether I is a directed graph.  But how might we encode this second fact, that G has no cycles? 
One way to say this would be to say that

For any path in G, that path does not start and end at the same node.

This looks a lot better, but we're going to run into some trouble when we try to write this out in 
first-order logic.  Recall that a path is a series of edges ((v0, v1), (v1, v2), …, (vn-2, vn-1)) of length n. 
In order for this to be a path, we would need to be able to guarantee that each of the edges in the 
sequence are in the graph and that the sink of each edge is the source of the next edge.  But more 
fundamentally than that, we need to be able to quantify over v0, v1, …, vn-1 where we don't know 
the choice of n.  This is difficult, because we can't just write out a statement like this one:
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v∀ 0. v∀ 1. v∀ 2. … v∀ n-1. P(v0, v1, …, vn-1)

Because we don't know how many nodes we need to quantify over.

In this problem, you'll see how to do such a quantification.  The trick will be to notice that instead 
of quantifying over the nodes in the path, we can quantify over paths in general.  As long as we 
sufficiently  describe what a “path” is so that we're sure that we know what we're quantifying 
over, we can then state that a graph where each path is not a cycle must be a DAG.  The task at  
hand, therefore, is to specify enough to ensure that when we say something to the effect of “p is a 
path in G,” we know enough about p and G to confirm that the description matches our intuition.

i. Suppose that we define the following predicates:

Digraph(G), which says if G is a directed graph,

Path(p, G), which says that p is a path in G, and

x  S∈ , which says that x is contained in set S.

We also define the function

Length(p), which returns the length of a path.

Write a statement in first-order logic that says “the length of any path in a graph is a  
natural number.”  You can assume that  refers to the set of natural numbers. ℕ

ii. Now, let's introduce another predicate:

x < y, which says if natural number x is less than natural number y

Let's also add in the functions

Nth(p, n), which returns edge n (zero-indexed) from path p, and

EdgeSet(G), which returns the set of edges in graph G.

Write a statement in first-order logic that says “any edge in a path in some graph is an 
edge in that graph.”  You may assume that the statement from part (i) is true, meaning that 
any path length must be a natural number.

iii. Let's introduce three more functions:

Source(e), which returns the source node of an edge, and

Sink(e),which returns the sink node of an edge.

That is, given an edge (u, v), calling Source would return u and calling Sink would return 
v.  Write a statement in first-order logic that says “the sink of each edge in a path is the 
source of the next node in the path.”  You may assume that the sentences from (i) and (ii) 
are  true,  and can  assume that  standard  arithmetic  operations  are  legal.   Make sure to 
remember not to say anything about the last node in the path!

 



4 

iv. Finally, using the terminology from (i), (ii), and (iii), assuming  G is a constant symbol 
referring to some particular digraph, and assuming that the statements you've written there 
are true, write a statement in first-order logic that says “G contains no cycles.”  You may 
use any arithmetic operators that you'd like, and can assume that any natural number is a 
constant symbol.

What  you  have  just  done  in  parts  (i),  (ii),  and (iii)  is  specify  a  first-order  theory.   From a 
programming perspective, if you were to write a program that implemented graphs and paths, no 
matter what implementation you use, as long as your implementation adheres to the statements 
listed above, you can guarantee that statement (iv) means that G contains no cycles.

Problem Five: Strong and Weak Induction

On the surface, strong induction is a much more powerful form of induction than weak induction. 
To prove some property P(n) holds for all natural numbers by strong induction, one key step is to 
assume that for some natural number n, for any natural number in the range 0 ≤ n' ≤ n, P(n) holds 
and to then claim that P(n + 1) holds.  It seems suspicious that this would even be legal, since this 
assumes an awful lot about P(n).

It turns out, though, that any proof that can be done by strong induction can be done by weak 
induction and vice-versa, assuming that the proof is modified slightly.  This means that despite 
the name, strong and weak induction are equally powerful.

i. First, let's prove that we can rewrite any proof that uses weak induction with a proof by 
strong induction.  To do this, we'll show that to show that some property  P(n) holds by 
weak induction,  we can  prove  P(n) instead  with strong induction.   More specifically, 
suppose that we have a property P(n) such that

P(0), and

n  ∀ ∈ℕ. (P(n) → P(n + 1))

Prove, using strong induction, that n  ∀ ∈ ℕ. P(n).  You have just shown that if you were 
only guaranteed that strong induction was valid, you could still use weak induction. 

ii. Now, for the harder direction: showing that any proof by strong induction can be replaced 
by an equivalent proof by weak induction.  Suppose that we that a property P(n) such that

P(0), and

n  ∀ ∈ℕ. (( n  ∀ ∈ℕ. n' ≤ n → P(n')) → P(n + 1))

Prove, using weak induction, that ∀n  ∈ ℕ. P(n).  (Hint: Define some new property Q(n)  
such that Q(n) implies P(n), and such that Q(n) can be proven by weak induction)


